
Query difficulty, robustness and selective application of
query expansion

Giambattista Amati, Claudio Carpineto, and Giovanni Romano

Fondazione Ugo Bordoni
Rome Italy

gba, carpinet, romano@fub.it

Abstract. There is increasing interest in improving the robustness of IR systems,
i.e. their effectiveness on difficult queries. A system isrobustwhen it achieves
both a high Mean Average Precision (MAP) value for the entire set of topics and
a significant MAP value over its worst X topics (MAP(X)). It is a well known
fact that Query Expansion (QE) increases global MAP but hurts the performance
on the worst topics. A selective application of QE would thus be a natural answer
to obtain a more robust retrieval system.
We define two information theoretic functions which are shown to be correlated
respectively with the average precision and with the increase of average precision
under the application of QE. The second measure is used to selectively apply QE.
This method achieves a performance similar to that with unexpanded method on
the worst topics, and better performance than full QE on the whole set of topics.

1 Introduction

Formulating a well-defined topic is a fundamental issue in Information Re-
trieval. Users in general are not aware of the intrinsic ambiguity conveyed by
their queries, as well as they are not confident on whether submitting short or
long queries to obtain the highest retrieval quality. It is a largely accepted evi-
dence that, for example, pseudo-relevance feedback (also known as blind feed-
back or retrieval feedback) can be used to expand original queries with several
additional terms with the aim of a finer formulation of the initial queries.

In many cases the QE process succeeds, but in some cases QE worsens the
quality of the retrieval. Global performance values tell us the average behaviour
of the system, but not if the system has a large variance in performance over
all single topics. Retrieval can be excellent with some queries and very poor-
performing with others. The introduction of the notion of robustness in retrieval
is thus motivated by the necessity of improving the quality of the retrieval also
on the most difficult queries.

Two new evaluation measures for robustness have been defined in the TREC
environment, i.e. the number of topics with no relevant documents in the top re-
trieved 10 (denoted in this paper by NrTopicsWithNoRel) and MAP(X), which



measures the area under the average precision over theworstX (=%25 of) top-
ics. A topic is deemed worst with respect to the individual run being evaluated.

The use of full QE usually results in an improvement of global MAP over
the unexpanded method. However, we notice that:

- the number NrTopicsWithNoRel of topics with no relevant documents in the
top retrieved 10 increases when QE is activated, and similarly

- MAP of the worst X topics diminishes when QE is adopted.

Briefly, QE always worsen the performance of the system on its poor-perfor-
ming queries. The objective of our study focuses on defining a decision method
for QE activation able to achieve or ameliorate as much as possible the global
MAP value obtained by full QE, while keeping the other two new measures at
the same value as the unexpanded method.

We address the following issues:

- defining an operational notion of a poor-performing query, that can be used
to have a measure on the risk of performing QE on that query.

- defining a measure predicting on what queries there is a reasonable chance
that QE fails or succeeds. This measure can be used to selectively activate
QE.

The problem of predicting a poor-performing query is not new. It has been
investigated under different names, such as query-difficulty, query-specificity,
query-ambiguity or even as an inherent problem of QE. Indeed, the importance
of the query-terms based on the quality of the first-pass ranking can be assessed.
According to Kwok [?] the within-document term-frequency and the standard
Idf can be combined to “peak up” those query-terms that hold a higher weight
in the original query. Difficult queries are those which do not possess a variety
of such important terms.

A different approach uses a similarity measure based on the cosine function
to generate the query-space. This topology does not exhibit a significant regu-
larity in the position of the difficult and of the easy queries. There is only some
continuity in the position of the queries of the same type [?].

The closest work to our investigation is the clarity score based on the lan-
guage model [?]. The clarity score needs to be computed at the indexing time
since it contains a collection model component.

As far as we know there has not been any methodological or experimental
work addressing the problem of the selective application of QE. This is a chal-
lenging task because it requires to formally relate the relevance to other notions
like query-difficulty and query expansion.

We propose a method which achieves a performance similar to that of the
unexpanded baseline on the worst topics, but better performance than full QE



on the whole set of topics. Our work is thus a fist step towards the definition of
a decision methodology for the selective use of the QE.

In our analysis we use the DFR (Divergence From Randomness) modular
probabilistic framework [?,?,?] together with query expansion based on distri-
bution analysis [?,?,?] for retrieval. We use the data of the TREC 2003 robust
track.

2 Retrieval Setting

Our objective is to develop a methodology for a stable and robust QE activation
to improve the performance on both the worst topics and all topics. We consider
the description-only queries of the TREC 2003 robust track data. Their average
length after stemming and with the stop list is about8 terms.

The retrieval framework is made up of two components: the DFR within-
document term-weighting model and QE within-query term-weighting model.
In the next two sections we briefly describe these two components. We use dif-
ferent DFR models to test robustness with selective QE activation.

2.1 Term-weighting models

The DFR within-document term-weighting models are:
I(n)OL2, I(ne)OL2, I(n)B2, I(ne)B2, I(ne)OB2. They are obtained from the

generating formula:

InfoDFR = − log2 Prob(term freq|doc freq, Freq(term|Collection)) (1)

where Prob is the probability of obtaining a given within-document term-fre-
quency randomly. Formula 1 is not used directly, but it is normalized by con-
sidering the probability of the observed term-frequency only in the set of docu-
ments containing the term. The final weighting formulas are:

I(n)OL2 :
tfn

tfn + 1
log2

(
N − doc freq+ 1

doc freq+ 0.5

)
(2)

I(ne)OL2 :
tfn

tfn + 1
log2

(
N − ne + 1
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)
(3)
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where

tfn = term freq · log2

(
1 + c · averagedocumentlength

documentlength

)
,

N is the size of the collection,

ne = N ·
(
1−

(
1
N

)Freq(term|Collection)
)

,

Freq(term|Collection) is the within-collection term-frequency,
term freq is the within-document term-frequency,
doc freq is the document-frequency of the term,
the parameterc is set to3.

2.2 Query expansion

The QE method is the same as used an TREC-10 with very good results[?]
except for the parameter tuning and some additional expansion weight models.

The weight of a term of the expanded queryq∗ of the original queryq is
obtained as follows:

weight(term∈ q∗) = tfqn + β · InfoDFR

MaxInfo

where
tfqn is the normalized term-frequency within the original queryq, i.e.

tfq
maxt∈qtfq

MaxInfo = argt∈q∗ max InfoDFR

InfoDFR is a term-frequency in the expanded query induced by
using a DFR model, that is:

InfoDFR = − log2 Prob(Freq(term|TopDocuments)|Freq(term|Collection))(7)

Formula 7 uses the same probabilistic model Prob of Formula 1, but the ob-
served frequencies are different. The term-weighting models compute the proba-
bility of obtaining a given within-document term-frequency, whereas the within-
query term-weighting computes the probability of obtaining a given term-fre-
quency within the topmost retrieved documents.

For the implementation of InfoDFR we here use the normalized Kullback-
Leibler measure (KL) [?,?]

InfoKL (t) = Freq(t|TopDocs)
TotFreq(TopDocs) · log2

Freq(t|TopDocs) · TotFreq(C)
TotFreq(TopDocs) · Freq(t|C) (8)



Table 1. The number of selected documents on the first-pass retrieval is 10, the number of the
extracted terms for query expansion is 40.

Parameters Models with full QE Model without QE
c = 3 I(n)B2 I(ne)OL2 I(n)OL2 I(ne)OL2 I(ne)OB2

DFR Expansion models
β = 0.4 Bo2 KL Bo2 Bo2 -

100 topics
@10: 0.4180 0.4070 0.4130 0.398 0.3940
MAP: 0.2434 0.2503 0.2519 0.2479 0.2329

top 10 with No Rel. 18 18 17 20 11
MAP(X) 0.0084 0.0065 0.0077 0.0058 0.0096

where C indicates the whole collection and TopDocs denotes the pseudo-rele-
vant set, while the Bose-Einstein statistics (Bo2) is:

InfoBo2(t) = − log2

(
1

1+λ

)
− Freq(t|TopDocuments) · log2

(
λ

1+λ

)
[Bo2]

λ = TotFreq(TopDocuments) · Freq(t|Collection)
TotFreq(Collection)

(9)

A further condition imposed for the selection of the new query-terms is that
they must appear in at least two retrieved documents. This condition is to avoid
the noise that could be produced by those highly informative terms which appear
only once in the set of the topmost retrieved documents. The QE parameters are
set as follows:

β = 0.4
|TopDocuments| = 10
the number of terms of the expanded query is equal to40.

Table 1 compares a baseline run with the full QE runs. We chose the model
I(ne)OB2 defined in Formula 6 as baseline for the comparison, since it is the “
best” performing model on the most difficult topics.

The unexpanded runs achieve the best MAP(X) and the lowest NrTopic-
sWithNoRel, and the runs with expanded queries achieve the highest values of
MAP and precision at 10.

3 Selective application of QE

In the following we study the problem of selectively applying QE to the set of
topics.

We exploit the InfoDFR measures, as defined by Formula 7, and introduce
a new measure InfoQ. We show that the sum of all InfoDFR over the terms of
the query is related to the Average Precision (AP) and InfoQ is related to the



AP increase after the QE activation. In other words, InfoDFR is an indicator of a
possible low outcome of AP, attesting thus when a topic is possiblydifficult. On
the other hand, InfoQ is an indicator of the successful application of QE.

These findings can be a first step towards the definition of a more stable
decision strategy for the selective use of the QE.

3.1 Test data

The document collection used to test robustness is the set of documents on both
TREC Disks 4 and 5 minus the Congressional Record on disk 4, containing
528,155 documents of 1.9 GB size. The set of test-topics contains 100 state-
ments. Among these topics there are 50 topics that are known to be difficult for
many systems. These 50 difficult topics were extracted from all 150 queries of
previous TRECs using this same collection. We have indexed all fields of the
documents and used Porter’s stemming algorithm.

3.2 How QE affects Robustness

Consider as an example the performance of the model of Formula 2, I(n)OL2,
as shown in Table 2.

With full QE, we achieve an increase of MAP equal to +7.5% with respect
to the baseline run. If we had an oracle telling us when to apply QE query-by-
query, the MAP increase would nearly double passing from +7.5% to +13.3%.

However, without the oracle a wrong decision of omitting the QE mecha-
nism would seriously hurt the final MAP of the run. The average gain per query
is ∼0.063 and the gain is much greater than the average loss (∼0.039). More-
over, the number of cases with a successful application of QE (57 out 100) is
larger than the number of the failure cases. Both odds are thus in favour of the
application of QE.

Comparing the figures of Table 2 with those relative to all the 150 queries
of the past TREC data, we observe a detriment of the success rate. The success
rate is around 65% with all the 150 old queries of past TREC data. A detriment
in precision at 10 is observed for only 15% of all the 150 old queries (against
19% of the TREC 2003 queries).

In addition, the increase of MAP with QE using all the old 150 queries is
larger (∼ +10%) than that obtained with this TREC data (∼ +5%).

3.3 Selective application of QE: topic difficulty

It is a well known evidence that the QE effectiveness is strictly related to the
number of documents which are relevant for a given query in the set of the top-
most documents in the ranking. If the early precision of the first-pass retrieval is



Table 2. Run I(n)OL2 with description-only topics. The columns with “No QE” contain the
number of queries to which the QE was not applied.

100 Topics
Baseline I(n)OL2 with QE I(n)OL2 with the oracle

MAP P@10 MAP % P@10 % MAP % No QE P@10 % No QE
0.23300.39400.2519 +7.5%0.4130 +4.6%0.2687 + 13.3% 43/1000.4400 + 10.5% 19/100

high, then we have a good chance to extract good additional topic terms together
with their relative query-weights. To start our investigation we first compute the
correlation factor between

- the numberRel of relevant documents in the whole collection and the AP
value over the 100 queries, and

- betweenRel and the precision at 10( P@10).

The correlation value−1 ≤ ρ ≤ 1 indicates the degree of the linear dependence
between the two pair of measurements. Whenρ = 0 the correlation coefficient
indicates that the two variables are independent. When instead there is a linear
correlation, the correlation coefficient is either−1 or 1 [?]. A negative correla-
tion factor indicates that the two variables are inversely related.

Surprisingly, these correlation factors come out to be both negative:
ρ(Rel, AP) = −0.36 andρ(Rel, P@10) = −0.14.
Although in these two cases the absolute values of the correlation coefficient

are not close to−1, even small values of the correlation factor are regarded very
meaningful especially in large samples [?].

Therefore, these values of the correlation factors seem to demonstrate that
the greater the numberRel of relevant documents, the less the precision (MAP
and P@10). An approximation line of the scatter line of the AP values for dif-
ferent numbers of relevant documents is produced in Figure 1. The fact that the
correlation factor with AP is larger than that with P@10 is due to the definition
of AP. The AP measure combines recall and precision by using the numberRel
of relevant documents.

This negative correlation might appear to be counter-intuitive, since among
the easiest topics there are many which possess a small number of relevant doc-
uments, and, as opposite, many difficult topics have many relevant documents.
On the other hand, a possible explanation of these negative correlation factors is
that a small number of relevant documents for a topic witnesses the fact that the
topic is “specific” or “non-general” with respect to the content of the collection.
In such a situation, common-sense says that specific queries have few relevant
documents, their query-terms have few occurrences in the collection, and they
thus are the easiest ones.



Fig. 1. The number of relevant documents is inversely related to AP of the unexpanded query
(ρ(Rel, AP) = −0.36). Queries with many relevant documents contribute little to MAP.

However, a definition of the specificity based on the number of relevant doc-
uments for the query would depend on the evaluation; we rather prefer to have
a different but operational definition of the query-specificity or query-difficulty.

The notion of query-difficulty is given by the notion of the amount of infor-
mation InfoDFR gained after a first-pass ranking. If there is a significant diver-
gence in the query-term frequencies before and after the retrieval, then we make
the hypothesis that this divergence is caused by a query which is easy-defined.

Info DFR =
∑
t∈Q

− log2 Prob(Freq(t|TopDocuments)|Freq(t|Collection))(10)

where Prob(t|Collection, TopDocuments) is a DFR basic model (based on the
Binomial, the Bose-Einstein statistics or the Kullback-Leibler divergence mea-
sure, as defined in Formulas 8 and 9). We here use the probability of Bose-
Einstein defined in Formula (9). We stress agin the fact that the same weighting
formula is used by our expansion method. together with the Kullback-Leibler
divergence I(ne)OL2 (see Table 1).

There are other information theoretic measures capturing the notion of term–
specificity of the query.

The goodness of InfoDFR is tested with the linear correlation factor with
AP of the unexpanded queries. The motivation is that easy queries usually yield
high AP values. To compute the difficulty score of the query we first produced



Fig. 2. The information content InfoBo2 of the query within the topmost retrieved documents is
linearly correlated to the AP of the unexpanded queries (ρ(Info Bo2, AP) = 0.52). Specific queries
have a large value of InfoDFR.

a first-pass ranking as it is done in QE. We took the set TopDocuments of the
first 10 retrieved documents and we computed a score for each term occurring
in the query. We considered the query-terms which appear at least twice in these
pseudo-relevant documents. This score reflects the amount of information car-
ried by the query-term within these pseudo-relevant documents. As shown in
Figure 2, InfoDFR has a significant correlation with the AP of the unexpanded
queriesρ(InfoBo2, AP) = 0.52. Similarly to the negative correlation between
the number of relevant documents and the AP of the unexpanded queries, which
is ρ(Rel, AP) = −0.36, the correlation factor between the score InfoQ and Rel
is negative (ρ(Rel, Info Bo2) = −0.23). Again, this may be explained by the
fact that specific queries possess fewer relevant documents.

Unfortunately, we did not find a significant correlation between InfoDFR and
QE; that is, InfoDFR is not able to predict a successful application of QE in a
second-pass ranking. These results show that the performance of query expan-
sion is not directly related to query difficult, consistent with the observation [?]
that although the retrieval effectiveness of QE in general increases as the query
difficult decreases, very easy queries hurt performance.



Fig. 3. The information content InfoQ of the query based on the combination of the priors and
Info DFR within the topmost retrieved documents is negatively correlated to the AP increase with
the QE (ρ(QE increase rate, InfoQ) = −0.33). The first and the third quadrants contain the
errors when the threshold is set to0.

3.4 Predicting the successful application of QE

Since InfoDFR cannot be used as a good indicator for the performance of the
QE, we explore alternative information-theoretic functions. The function

InfoPriorQ=
∑

term∈Q

− log2

Freq(term|Collection)
TotFreq(Collection)

is shown to have a moderately weak negative correlation with QE:
ρ(QE, InfoPriorQ) = −0.27.
InfoPriorQ is linearly related to the length of the query with correlation

factorρ(QueryLength, InfoPriorQ) = 0.90, so that InfoPriorQ does not differ
to much from the query length. In other words, the query length is an alternative
good indicator for the successful application of the QE. Short queries need in
general QE whilst very long queries do not need QE, but this simple fact does
not solve the problem of moderately long queries for which QE may or may not
succeed.

Let

MQ = max

(
InfoPriorQ− µInfoPriorQ

σInfoPriorQ
, max
M∈DFR

arg
Info DFR− µInfo DFR

σInfo DFR

)



Table 3.The set of queries with the highest InfoQ. The QE is not applied to such queries.

QE successInfoQ Query LengthTopic
y 0.482 7 604
n 0.345 8 631
n 0.335 17 320
n 0.333 13 638
n 0.329 9 621
n 0.327 14 619

The function:

InfoQ =
1

QueryLength

(
InfoPriorQ− µInfoPriorQ

σInfoPriorQ
+ MQ

)
(11)

where theµXs and theσXs stand for the mean and the standard deviation of
theX values, combines InfoPriorQ and InfoDFR. Info DFR query rankings may
not agree using different DFR models. Because the correlation factor is neg-
ative, and since we trigger the QE when InfoQ is below a given threshold, a
cautious way to smooth different InfoDFR values is to compare the threshold to
the maximum value of all these DFR models, InfoPriorQ included.

InfoQ has a higher correlation with QE (ρ(QE, InfoQ) = −0.33) than In-
foPriorQ (see Figure 3), and a smaller correlation factor with the query length1

(ρ(QE, InfoQ) = 0.62 ).

4 Discussion of results

In Table 4 we summarize the results on the selective application of QE. The
MAP(X) values are not reported since the new values are similar to those in the
full QE models; thus we focus on the other measures. We compare the perfor-
mance of models with full QE with the performance of the models with selective
QE under the same setting.

The first remark is that the decision rule for QE activation is quite robust.
The MAP of models with selective QE is greater than the MAP of the full QE
models for a large range of values of the threshold parameter (>= 0). In fact,
InfoQ provides with a high degree of confidence the cases in which QE should
be absolutely activated, which are the cases when InfoQ assumes very small
negative values, as it can be seen in Figure 3. This explains why the new value

1 Usinglog2(QueryLength) instead of QueryLength the score of Formula 11 is more correlated
to the query length withρ(QueryLength, InfoQ) = 0.74 andρ(QE, InfoQ) = −0.34.



Table 4.The selective application of QE.

Parameters Runs with QE
I(n)B2 I(ne)OL2 I(n)OL2 I(ne)OL2

DFR Models
c = 3 I(n)B2 I(n e)OL2 I(n)OL2 I(ne)OL2

DFR Expansion models
β = 0.4 Bo2 KL Bo2 Bo2

all topics with QE
@10: 0.4180 0.4070 0.4130 0.3980
MAP: 0.2434 0.2503 0.2519 0.2479

top 10 with No Rel. 18 18 17 20
topics with QE 100 100 100 100
InfoQ < 0.12 all topics with selective QE

@10: 0.4230 0.3950 0.4210 0.3950
MAP: 0.2456 0.2543 0.2556 0.2524

top 10 with No Rel. 11 16 15 16
topics with QE 68 67 66 67

InfoQ < 0 all topics with selective QE
@10: 0.4140 0.3950 0.4080 0.3950
MAP: 0.2439 0.2486 0.2527 0.2477

top 10 with No Rel. 11 16 14 16
topics with QE 41 41 37 41

Baseline
@10: 0.4080 0.3950 0.3940 0.3950
MAP: 0.2292 0.2282 0.2330 0.2282

top 10 with No Rel. 11 16 12 16
topics with QE 0 0 0 0

of MAP keeps constantly larger than the MAP obtained with all queries ex-
panded. This decision method is thus safe.The behavior of Precision at 10 is
more variable, depending on the choice of the threshold.

The second observation is that selective QE positively affects the NrTopic-
sWithNoRel measure. The models with selective QE have almost the same Nr-
TopicsWithNoRel performance as the unexpanded runs, and this is one of the
main objectives of our investigation.

5 Conclusions

We have defined two information theoretic functions used to predict the query-
difficulty and to selectively apply QE. Our objective was to avoid the application
of QE on the set of worst (difficult) topics. Indeed, QE application predictor
achieves a performance similar to that of the unexpanded method on the worst
topics, and better performance than full QE on the whole set of topics. Our work
is thus a promising step towards a decision methodology for the selective use of
the QE.
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