
 Shift of bias without operators *

CLAUDIO CARPINETO
Fondazione Ugo Bordoni

Via Baldassarre Castiglione 59, 00142 - Rome
E-mail: fubdpt5@itcaspur.bitnet

Abstract
Just as the order defined by generality over concepts allows concept induction to be
performed without generalisation/specialisation operators, so too the order defined by set
inclusion over concept languages may allow the shift to better concept languages during
learning to be performed without language shift operators. We are currently investigating
this idea and in this paper we report first results. We present a framework for sided
language shift adapted from Mitchell's version space strategy, and discuss its theoretical
requirements and practical limitations. We illustrate the ordering-driven versus operator-
driven strategy to language shift with a problem example (i.e., version-space induction
over variable-factored conjunctive concept languages) to which our framework has been
successfully applied.

1. Introduction
One of the preferred strategies to incorporate bias in a concept learner is careful

vocabulary choice of its concept language (e.g., (Utgo86), (Subr89), (Berg91)) .Any
concept language designed prior to learning, however, may later turn out to be too small
(strong bias) or too large (weak bias). Various approaches have been proposed to shift the
bias in the course of learning (e.g. [Math89], [Paga89], (Utgo86)). Even though these
approaches apply to different learning algorithms (e.g, decision trees, version spaces) and
try to improve different quality measures associated with learning (e.g., consistency,
conciseness, accuracy, efficency) they usually tackle the problem in the same manner, i.e.
defining a set of language shift operators and carrying out a depth-first search through the
space of possible extensions/restrictions of the current concept language aimed at finding
a better language for the learning task at hand. Furthermore, since the number of
admissible extensions/restrictions is generally intractably large, most of the approaches to
inductive language shift rely on various heuristics to reduce the number of candidates
and/or to cut down the search.

                                    
* Work carried out within the framework of the agreement between the Italian PT
Administration and the Fondazione Ugo Bordoni



2

This is a common research paradigm; in machine learning it has been extensively
used to solve the much more simple and well-understood problem of inducing concepts
from examples. For this task, however, other methods have been proposed that rather than
being based on the use of generalisation/specialisation operators are based on the ordering
defined by generality over the concept space. Of the latter methods, the Candidate
Elimination (CE) algorithm (Mitc82) is perhaps the best known. It maintains and updates
two boundary sets, the set S containing the maximally specific concepts consistent with
data and the set G containing the maximally general concepts consistent with data, which
can be used to represent and find all  consistent concepts (i.e. the version space).
Hereafter we shall assume the reader is familiar with the basic CE algorithm.

As methods driven by ordering may present significant advantages over methods
driven by operators, it seems to be important to address the question of whether they can
be applied also to shift of bias. As we shall see, there are in fact structural similarities
between concept induction and concept language induction that justify changing the CE
algorithm with the aim of inducing concept languages rather than concepts.

2. A framework for sided language shift
What makes the CE algorithm work is that (a) the hypothesis space is partially

ordered (a concept c1 is more general than a concept c2 if the set of instances covered by
c1 is a proper superset of the set of instances covered by c2) and (b) "data" can be used to
prune upper and lower elements of such space (positive instances rule out too specific
concepts and negative instances rule out too general concepts). These two features have a
natural counterpart in the shift-of-bias setting. First, the concept language space is
partially ordered by set inclusion: we shall say that a language L1 is larger than a
language L2 if the set of concepts expressible in L1 is a proper superset of the set of
concepts expressible in L2. Second, the results of the learning process can be used to
prune too large or too small languages. There are several ways in which this may happen.
For instance, small languages may be not enough expressive, thus giving rise to
inconsistency with data. Conversely, large languages may cause the learning algorithm to
become unacceptably costly (for instance in terms of the number of training instances
necessary for convergency), or may degrade its predictive capability (Berg91). The
problem of sided language shift can be formulated more precisely in this way:

Given
- A set of training instances {I}.
- An inductive learning algorithm.
- A set of concept languages {L}.
- An evaluation function E that analyses the result of induction and states whether

either the relative concept language is too small (E = -1) and has to be enlarged, or is the



3

right size  (E = 0) and may be left unchanged, or is too large  (E =+1) and has to be
restricted.

Find
The concept languages that return E = 0.

To solve this problem the procedure described in fig.1, adapted from the version space
strategy used in concept induction, can be employed.

Initialize the sets S and G, respectively, to the sets of maximally small and maximally large concept 
languages in {L}.

For each instance i in {I}
For each language l in S

Run the inductive algorithm
If  E = 0 Then continue
else If  E = -1 Then replace l with its larger languages, only to the amount 

required so that they return E = 0,  and in such ways
that each remains smaller than some language in G and there are no 

smaller languages in S.
else If  E = +1 Then drop l from S.

For each language l in G
Run the inductive algorithm
If  E = 0 Then continue
else If  E = +1 Then replace l with its smaller languages, only to the amount 

required so that they return E = 0, and in such ways that each 
remains larger than some language in S and there are

no larger languages in G.
else If  E = -1 Then drop l from G.

Fig.1  The sided language shift algorithm

Besides the computational problems, a few of which will be outlined later, such a
framework poses a fundamental theoretical requirement : the monotonicity of the
evaluation function E. More precisely, the property to be satisfied is the following: if E = -
1 for a language L then E = -1  for any language L*cL; likewise, if  E = +1 for a language
L then  E = +1  for any language L*⊃L. This must hold for any instance distribution. The
monotonicity of E depends on several factors : the particular inductive algorithm
considered, the set of concept languages employed, the criteria used to restrict or enlarge
the language. In the next section we introduce a problem example whose parameters
guarantees the monotonicity of E.

3. A problem example: version space induction over variable-
factored conjunctive concept languages



4

Our problem example is characterized by the following parameters. The inductive
algorithm is the CE algorithm. Each instance is a conjunction of n attributes. The concept
languages initially available are n tree-structured attribute languages, their leaves being the
values present in the training instances. We shall use three very simple attribute languages:

L L L 31 2

anya anyb anyc

a ba b c c
1 1 12 22

The criteria used to shift the concept language are consistency (i.e. when the version
space becomes empty the language has to be enlarged) and efficiency (i.e. when the size
of the sets S or G exceeds a given threshold1, which we assume equal to 2, the language
must be restricted). We will examine both approaches to language shift in turn.

Language shift based on operators
We assume there are three language-shift operators (op1, op2, op3), the application of

opi causing the current language (any attribute language, initially) to be multiplied2 by the
i-th attribute language. Since all chosen attribute languages contain the superconcept 'any',
any operator application produces a larger language, as more usually done.

Suppose we begin with the attribute language L1 {anya,a1,a2} and that the first
instance (the first instance must be positive in the CE algorithm) is a1b1c1+.The
corresponding version space is formed by S={a1} and G={anya}. Suppose the next
instance is a2b2c2- ; the version space remains unchanged.  If the algorithm is next given
the instance a1b2c1-, the version space becomes empty. At this point a language-shift
operator is selected (op2), the new language L12 is generated and the version space in L12

is computed. It consists of the set S={a1b1} and the set G={anya-b1}. Then suppose the
algorithm is given a1b1c2- ; this instance makes L12 inconsistent. Another operator is
applied (op3), which returns the language L123. While this language is consistent with the
data (its final version space is formed by S={a1b1c1} and G={anya-b1c1}), it violates the
size constraint, in that the version space in L123 corresponding to the first two instances is
bounded by a three-valued set (G={anya-anyb-c1, anya-b1-anyc, a1-anyb-anyc}). Because
no more operators are applicable, we have to backtrack and change the operator applied to

                                    
1The complexity of the CE algorithm depends on the square of the boundary sets' size
(Mitc82).
2The product  L1,2 of two factor languages L1 and L2 is the set of concepts formed from
the conjunctions of concepts from L1 and L2 (examples of product concepts are 'anya-
anyb', 'anya-b1', etc). The number of concepts in the product language is therefore the
product of the number of concepts in its factors.



5

the initial language L1, this once choosing the operator op3. As also the newly-generated
language L13 is inconsistent we have to backtrack again changing the initial attribute
language until the language L'23 is generated, whose version space is non-empty (it
contains the concept b1c1) and does not violate the size constraint.

Sided language shift
We now solve the same problem using the sided language shift strategy. The set of

candidate concept languages is formed by all the languages that can be generated
multiplying the attribute languages by one another. With n initial factor languages it is
possible to generate  ∑k=1,n n! / (n - k)! k!  =  2n - 1 product languages;  moreover, each
product language is larger  than any of its factor languages (note that this holds in
general, because it is always possible to add the superconcept 'any' to each factor
language). In our case the ordering graph over the product languages is:

L123

1 2 3

12 13 23L L L

L L L

Having chosen this set of languages we are sure the function E varies monotonically,
i.e. the algorithm in fig.1 is correct. To prove this we have to show that both consistency
and efficiency vary monotonically (in two inverse ways) with the ordering over the concept
language space. The former is trivial: since a version space contains by definition all
concepts consistent with data, then, for any instance distribution, if a language produces an
empty version space then any smaller  language will also produce an empty version space,
and viceversa. The latter is more tricky because in general the efficiency of the CE
algorithm is only weakly related to its concept language's size. In this case however it can
be easily seen [Carp91] that the structure of product languages is such that for any pair of
boundary sets in the factor languages the corresponding boundary sets in their product
language are larger. Therefore inducing version spaces over product languages is never
(i.e. for any instance distribution) less costly than over factor languages, and viceversa. Of
course, the algorithm correctness does not guarantee that there will be some solution; this
depends on the existence, for any training set, of at least one concept language in the
hypothesis space that satisfies both criteria. In our example the solution exists (the
language L'23) and the algorithm in fig.1 will  find it. The steps necessary to shift to the
solution language are shown in fig.2; in each row of the matrix the version spaces
associated with the languages in the sets S and G after any training instance are pictured
(a,b,c are short respectively for anya,anyb,anyc).



6

1a b c1 1

abc G

c

c

c

ca b1 1 1

1 12 2 2 2

a b2 2 2

a b1 2 1

b

+

-

-

a1 1 2
-

a1

a b c

1
b

1c

S

L L L L L LL 3 3 3 11 3

1
b

a1 1c
S

1a b c1 1

abc1 ab bc1c a1b1

a1b1

a a1 b

c1b1

bc1 b1c

a1 c1

a c1 ca1
G

 { } { }

{ }

{ }

{ }

1
b
S

a1b1

b1a

c1b1

b1c G

c1b1

S=G

Fig.2  Version-space induction with sided language shift

4. Discussion
Sided language shift presents advantages and disadvantages over operator-based

language shift. As in any method based on hypothesis space ordering, the advantages
seem to chiefly rely on the possibility of discarding more candidate hypotheses
(languages) and on the ease of selecting new candidates when the current hypothesis does
not fit data. On the other hand, there appears to be two main disadvantages: limited
representational capabilities due to a restricted set of concept languages, and exponential
growth of the size of S or G. The latter seems to be particular important because the size
of the boundary sets controls the number of times the two more costly operations involved
(i.e., learning evaluation and concept induction after any language shift) have to be
performed.

There are however specific cases in which these costs can be reduced. Elsewhere
(Carp91) we proposed an approach to version-space induction over variable-factored
conjunctive concept languages that can be seen as employing a one-sided language shift
strategy (in fact, this research has originated from it). The use of a simple evaluation
criteria (consistency) and of a specifically designed algorithm which was able to induce
the new version space in any product language without reprocessing the instances already



7

seen in its factor languages allowed the overall complexity to be kept low. In fact, the
method can be used to improve the efficiency of the standard CE algorithm when the
initial tree-structured conjunctive concept language is consistent with data.

5. Conclusion
We have taken a first step toward a general alternative framework for inductive

language shift which is not based on operators. Among the many possible dimensions
along which this early model of sided language shift can be improved, exploring its
applicability to other learning algorithm and other evaluation criteria (for instance the
expressiveness/predictivity  trade-off associated with classification learning)  seems to be a
crucial one.

Acknowledgements
I would like to thank Derek Sleeman, Pete Edwards, Filippo Fabrocini and Renato

Petrioli for useful discussions on this topic.

References
[Berg91] Bergadano, F., Esposito, F., Rouveirol, C., Wrobel, S. (1991). Evaluating
and Changing Representation in Concept Acquisition. In Proceedings of EWSL-91,
Porto, Springer-Verlag.
[Carp91] Carpineto, C.(1991). Efficient induction of version spaces through 

constrained language shift. Technical Report of Fondazione Ugo
Bordoni, 5T03591, Rome. To appear in Proceedings of The Fifth 
Generation Computer Systems, Tokyo, 1992

[Math89] Matheus, C.J., Rendell, L.A. (1989). Constructive induction on decision 
trees. In Proceedings of the 11th IJCAI, Detroit, Morgan Kaufmann.

[Mitc82] Mitchell,T.M.(1982). Generalization as Search.Artificial Intelligence, 18.
[Paga89] Pagallo, G.(1989). Learning DNF by Decision Trees. In Proceedings of 

the 11th IJCAI, Detroit, Morgan Kaufmann.
[Subr89] Subramanian, D. (1989). Representational Issues in Machine Learning. 

In Proceedings of the 6th International Workshop in Machine Learning.
Ithaca, Morgan Kaufmann.

[Utgo86] Utgoff, P. (1986). Shift of bias for inductive concept learning. In R. 
Michalski et al. (Eds), Machine Learning  vol II. Morgan Kaufmann.


